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This part consists mainly of an analysis of cyclic graphs to allow the 2, r;c 

enumeration of the ring structures of chemistry. Many chemical graphs are 

mixed, that is are trees in which cyclic subgraphs are embedded. The complete 

representation of such structures is taken up in Part III, and we will be con- 

cerned here only with the fundamentals of pure cyclic graphs. 

The most frequent ring in organic chemistry is the simple cycle, e.g., Z.Q/ 

benzene; and these structures (ring structures with one ring) afford no special 

problems as they are simple mappings of a linear chain. A canonical form would 

be the cut which maximizes the DENDRAL value of the string. The encoding of 

the following figures is self evident: 

0 

P-h 
i.e., 

I I 

X/c 

C-6) 

N 

0 
(-N.5) 

S 

i’ N 
(-S.C.N.2) 

Polycyclic structures such as 

STEROID NUCLEUS MORPHINE NUCLEUS NAPHTHALENE BIPHENYL 

[41 [51 r21 r11, [II 

are, however , quite important and require a more elaborate treatment. The 

chemist refers to a ring-structure (or "ring", when the context makes this 

clear) for a set of atoms inseparable by a single cut. The number of rings 

(bracketed above) in such a structure is the minimum number of cuts needed to 



convert the structure to a tree. For a polyhedron (a planar graph everywhere 

at least 3-connected), this is one less than the number of faces, i.e., the 

number of cuts needed to separate the graph, a definition we can generalize 

to 2-connected graphs as well. 

General Introduction to the Treatment of Rings. 

Attempts to process rings on a node-by-node basis like linear DENDRAL g;z,/o 

proved unrewarding. Ambiguities due to symmetry are usual, and many paths 

can be evaluated only by recursively searching through the entire graph. This 

approach was therefore abandoned in favor of a fundamental classification of 

the possible graphs. That is, the distinct ways in which a set of nodes can 

be connected to form a cyclic graph have been calculated in advance. To apply 

these calculations to actual formulas, a number of simplifying steps are intro- 

duced: 

1. Analyze the ring into its paths and vertices (branch points). The .A?.// 

classification then depends on the set of branch points, the atoms which zre 

triply connected. Organic rings rarely have more than three branches at any 

point; instances of four branches (usually called "Spiro" forms) can be accommo- 

dated by exception. H atoms and other substituents attached to the ring are 

ignored. 

2. Produce a general classification of connectivity diagrams, the trivalent 
g2,/20 

graphs. Section 2.2 reviews how the set of trivalent graphs can be systematically 

arranged without isomorphic redundancies. With few exceptions, such graphs are 

most conveniently presented as chorded polygons. (Hamilton circuits), 

Polygonal graphs are relatively easy to compute, but they fail to show many 
u.z, /22, 

of the symmetries of the figures. This is dramatized by the two isomorphic 

polygonal representations of the bi-pentagon. 

BI- 
PENTAGON 



Furthermore, a few graphs lack Hamilton circuits, and thus cannot be represented 

as chorded polygons. 
2 ,. ; ,2...z 

.z I ix.3 

3. Map the paths of the chemical graphs on the diagram, according to the 

canons detailed below. 

An example will be introduced at this point to help illuminate these ;2 , / t/L" 

detailed rules. 

To recapitulate, the linear paths and the vertices connecting them are 2-/v,/ 

first identified. The vertices are simply the branch points, i.e., the atoms 

with three or more links to the rest of the ensemble. For these purposes a 

double or triple bond is a single link. The paths are then the intervals 

between the vertices. A path may be a simple link or a linear string of 

tandemly linked atoms. For example, marking the paths of pyrene (a) gives the 

diagram (b) 

PYRENE 

(a) (b) (cl (d) 

which is readily recognized as isomorphic to the prism (c) and its formal 

g r a p h  (d) l The isomorphism of (b) with (c) could also be established algo- 
,.&? A/3 

rithmically by systematic permutation of the incidence matrix of the graphs, 



(c) represents the essential idea of topological mapping. It then remains 

to describe a syntax for describing such a figure in a unique code in com- 

putable format. Part II concerns itself only with the possible vertex groups, 

leaving the mapping of the paths to Part III. 



THE TRIVALENT CYCLIC GRAPHS 

(The non-separable connections of n trivalent objects) 

Each link must terminate in 2 nodes; each node has 3 incident links. ..z * z&i 

Hence there will be 3n/2 links and the order n must be even. The following 

development treats n from 0 to 12 in detail, but could be generalized 

indefinitely. The main objectives are to indicate 

(1) all the possible graphs 

(2) isomorphisms of superficially different graphs 

(3) symmetries within a graph 

(4) rational description of each item 

(5) rational ordering of the graphs 

(6) rational numbering of the vertices and paths 

(7) compact, computable notation for each feature 

.z-z?A 

Several computer programs have been applied together with substan- 

tial manual effort to meet these objectives. The results are mainly summarized 

in the accompanying diagrams. 

Any trivalent graph of a given order is found to represent either 

(1) a polyhedron of the same order (i.e. a planar graph 

nowhere separable by < 3 cuts),or 

(2) a compound graph, the union of two planar graphs of 

lower order, obtained by cross-reuniting a pair of 

cut edges, one from each graph, and thus somewhere 

separable by 2 cuts, or 

(3) a gauche or nonplanar graph, also called skew. 



Polyhedra, including the degenerate forms with 0 vertices (the circle 2 ;L. .d 

with two virtual faces, no solid angles) and 2 vertices ("bicyclane", three 

virtual faces), are thus fundamental to the general development. For their 

formal computation we have relied on the conjecture that every trivalent 

polyhedron has a Hamilton circuit, i.e., a circuit 

of paths that traverses each vertex just once. On 

this basis, any polyhedron can be projected as an n- 

wn, with n/2 chords planted across all the vertices. 

(Therefore, graphs with a Hamilton circuit may be 

called "polygonal".) This conjecture has been 

attributed to Tait 113 by Tutte[" , who has found 

a counter example which has, however, 46 vertices [21. 

While no tangible examples are known to have been 

missed, a sounder topological theory of polyhedra could beboth reassuring and 

more elegant (see 2.5). 

The trivalent polyhedra of from 0 to 12 vertices have been calculated in 
.z ‘Z.-Y/ 

this way, and various representations of each of these are shown (Fig. 2T.5). 

They.have also been checked for n c 12 by the traditional method of adding an 

extra edge in all possible ways to each of the faces of the polyhedra of order 

n-2. 

The polyhedra were extracted as a subset of the chorded polygons. That 2 2 3 2 

is, all permutations of n/2 chords across an n-gon were systematically con- 

sidered. This representation has the advantage that its elements remain 

invariant under manipulations of the polygon, e.g., rotation of the vertices. 

The program then demoted the graphs that had doubly connected parts, that is, 

that were unions of two graphs of lower order. Al.1 graphs were tested for 

isomorphisms by systematic tracing of the alternate paths to find other possibly 

distinct Hamilton circuits~ i.e., alternative representations as chorded polygons. 

Comparisons are made on the basis of span lists, i.e., cyclic lists showing the 

*This is best accomplished by 2.90 



span of the chord from each vertex (cf. 2.30). 
7. 

The canonical form of the span list is the lowest numerical value* 
--. 

under 

the permitted operations of n-fold rotation and reflection. For the most part, 

the symmetries could be prospectively anticipated to make the program more 

efficient. The graphs were scrutinized for planarity (Kuratowski's criterion, 

see 2.25). The planar graphs were then candidates for manual construction of 

polyhedra. We conjecture that topological symmetry can always be carried over 

into the geometrical symmetry of the construction of the polyhedron. The assign- 

ment of solid angles is, of course, arbitrary. 

***** 

*2.2331 

In the computations here, the program as it evolved included a particular 

interpretation of the span. This is the shortest interval between the nodes in 

either sense; when ambiguities were discovered, they were resolved by adding a 

low order bit (say l/2) to the value for the retrograde sense. Hence for the 

prism the span values are: 



Compound Graphs. Unions of smaller graphs have been developed in two ways. 
2 2y' 

The program for permuting chord lists on the polygon produces all the compound 

graphs with Hamilton circuits. However, many compound graphs are non-polygonal. 

The only cases relevant to chemical graphs (i.e. with less than 38 vertices!) 

can be composed by a bilineal union of two circuits, when a single circuit is 

lacking. The theory of non-Hamiltonian polyhedra has some mathematical, if no 

chemical interest, and must be included in any general classification of graphs, 

as discussed in an appendix (2.72). 

Gauche Graphs. A gauche or non-planar graph is one which cannot be .d 22-c 

represented on the plane (nor, therefore, by projection as a polyhedron), 

without some edge crossing over another. Kuratowski showed that any gauche 

graph must contain either (a) or (b): 

Do such graphs play any role in chemistry? 

(a) (b) (cl (d) 

In fact, none of the 11,524 rings in the Ring Index is gauche; consequently, 

except for 6CCC, the gauche graphs have been deleted from the figures in this 2.2 3-z 

report. The consideration of 6CCC as a polyhedral derivative will illustrate the 

difficulties and possibilities of formulating a gauche structure. Fig. 2.25a 

can be passed over as a pentaspiro formation already of unreasonable, though 

perhaps not unattainable, complexity. 

Figure 2.25~ shows 6CCC as an internally chorded tetrahedron. That is, 2 2. J-3 

a gauche graph must have an additional path within an already tightly caged 



structure. Figure 2.25d illustrates a possible candidate to fill this hiatus in 

topological chemistry. 

The obligatory nonplanarity of the gauche graphs should not be confused 2 zJ-ii/' 

with the optional drawing of crossed paths in representations set out as alter- 

natives to a planar mesh (v. Part 1II);a gauche graph has no planar mesh. 

Interpretive Coding of Vertex Group Diaprams. 2 2 J-J-- 

The chord list of any polygon can be abbreviated to give an interpretive 

code: (1) letters of the alphabet, A to Z, stand for spans from 1 to 26, (2) a 

chord is mentioned only once, when either end is first encountered, since the 

span fixes the location of the other end. Thus the prism, whose chord list is 

234234 becomes 6BCB, the underscored figures referring to chords denoted by -- 

previous digits. Actually the last character is redundant, being fixed by its 

predecessors in the construction. Thus any polyhedron with n vertices, if it 

has a Hamilton circuit, can be constructively and compactly denoted with a 

code of only (n/2-1) characters. These codes, lacking invariance under rotation, 

are treacherous for the recognition of canonical forms and therefore play no 

role in the computation, being translated at once into the complete span list. 

These codes have also been shown on Figure 2T.5 for illustration purposes. The 

syntax will be evident from the examples and from the dissection of Figure 2T.20. 

Ordering. The graphs are ordered by the following rather arbitrary 2260 

principles. There are however designed to facilitate matching of codes with 

established lists. 

1. Polygons. The polygon is oriented so as to minimize the numbering 2.2-z/ 

of its span list (cf. 2.2331). Within each series, the order is then given 

by the compact code generated from this number, v.s., 2.255. If two or more 



polygons are isomorphisms, all are shown; the canonical choice among them 

has minimal coding. 

A. Polyhedra are displayed first. 

B. Then unions with polygonal representations. .2 .% i .2 

2. Non-polygons. The polygons are projections of Hamilton circuits on a 

circle. When no single circuit captures all the nodes, the graph may be 

dissected into two disjoint circuits joined in a bilineal union (for further 

mathematical curiosities see 2.72). The canonical dissection creates a 

maximum couple of circuits, the larger taken first. The value of a circuit is 

determined by its 

order (number of nodes) 

compact code: chord list (2.255) 

edge designated for splicing in bilineal union. 

The coding follows the form C l:nl,n2:C2 where Cl and C2 are the component 

circuits; n 1 and n 2 are the spliced edges. The set of known examples for 

n=8, 10, 12, as given in 2T. 4 , will clarify the notation. 



Numbering of Vertices and Edges. Before defining the mapping of paths 2 -A- 

we must consider the numbering, i.e. ordering the sequence of vertices and paths. 

This issue is closely connected with canonical orientation of the diagram. A 

natural linear order for the parts of a polyhedron is not always self-evfdent. 

The polygonal representation, whenever one exists, suggests one approach. We 

must still select an orientation of the polygon, which may offer a choice among 

n-fold rotational and 2-fold reflectional permutations. For the present treatment 

we adopt the minimum span list (See 2.2331). Thus, some possible representations 

and notations for the prism are: 

3 4 SPAN LIST - 234234 

CHORDLIST - 6BCB 
2 5 

1 6 

INCIDENCE MATRIX 

2 3 4 5 6 

-7-J : 
1 3 

114 
15 

FACE INCIDENCE (DUAL GRAPH) - BDE ACDE BDE ABCE ABCD B C D E 
1 11A 

1llB 1 11c 1D 
FACE LIST, VERTICES - 123 2345 456 1346 1256 

FACE LIST, EDGES - abg bcdh dei efgi aefh 

INTERCHANGE GRAPH - bfgh acgh bdgi cchi dfhi bcdefghi 
1 111 a 

abgi abef abde cdef 1 11 b 
1 1 lc 

1 lid 
1 lie 

1 lf 



Of these various representations, the Span 1s is brief and,being invariant s<3;L: 

under rotation, easy to permute. We therefore denote each graph by its span 

list in minimal form and label the vertices in the corresponding sequence. Thus 

(234234) = (342342), of which (234234) is minimal. Hence 

3(!Q) - 4@ = 2@ 
2 4 3 2 4 3 

The numbers above are the span, not tne vertex values. 

5 2 

Vertex Labels 

z .?J 

The vertices being numbered, the path list is in the order of the vertex 

couples, the polygonal circuit being taken first, then the chords. Thus the 

nine edges of the prism are, in order, 12, 23, 34, 45, 56, 61, then 13, 25 and 

46. Caution: the polarity of each path follows this numbering. The same rule 

is applied to "self-looped edges," or "slings", i.e. chords with a span of 1. 

Examples: 

6 
5 

3 

6BCB 

6 

5 
9 

1 

0 
4 * 

3 

6AAA 
Edges 



Numbering of Vertices and Edges. Before defining the mapping of paths ,p -2ir 

we must consider the numbering, i.e. ordering the sequence of vertices and paths. 

This issue is closely connected with canonical orientation of the diagram. A 

natural linear order for the parts of a polyhedron is not always self-evident. 

The polygonal representation, whenever one exists, suggests one approach. We 

must still select an orientation of the polygon, which may offer a choice among 

n-fold rotational and 2-fold reflectional permutations. For the present treatment 

we adopt the minimum span list (See 2.2331). Thus, some possible representations 

and notations for the prism are: 

3 4 SPAN LIST - 234234 

CHORDLIST - 6BCB 
2 5 

1 6 

INCIDENCE MATRIX 

2 3 4 5 6 
11 11 

1 1 

-----I 

2 
1 3 

114 
15 

FACE INCIDENCE (DUAL GRAPH) - BDE ACDE BDE ABCE ABCD B C D E 
1 11A 

1llB 

-7 

11c 
1D 

FACE LIST, VERTICES - 123 2345 456 1346 1256 

FACE LIST, EDGES - abg bcdh dei efgi aefh 

INTERCHANGE GRAPH - bfgh acgh bdgi cchi dfhi bcdefghi 
1 111 a 

abgi abef abde cdef 1 11 b 
1 1 lc 

1 lld 
1 lle 

1 lf 



Of these various representations, the span 1% is brief and,being invariant 2,3z 

under rotation, easy to permute. We therefore denote each graph by its span 

list in minimal form and label the vertices in the corresponding sequence. Thus 

(234234) = (342342), of which (234234) is minimal. Hence 

3(!gfi - J=Jy = 2b$$ 

2 4 3 2 4 3 

The numbers above are the span, not tne vertex values. 

6 1 

5 

43 
2 

4 3 

Vertex Labels 

z .?;/ 

The vertices being numbered, the path list is in the order of the vertex 

couples, the polygonal circuit being taken first, then the chords. Thus the 

nine edges of the prism are, in order, 12, 23, 34, 45, 56, 61, then 13, 25 and 

46. Caution: the polarity of each path follows this numbering. The same rule 

is applied to "self-looped edges," or "slings", i.e. chords with a span of 1. 

Examples: 

6 
5 

3 

6BCB 

6 

3 

6AAA 
Edges 



Numbering of Vertices and Edges. Before defining the mapping of paths ,7 -3r 

we must consider the numbering, i.e. ordering the sequence of vertices and paths. 

This issue is closely connected with canonical orientation of the diagram. A 

natural linear order for the parts of a polyhedron is not always self-evident. 

The polygonal representation, whenever one exists, suggests one approach. We 

must still select an orientation of the polygon, which may offer a choice among 

n-fold rotational and 2-fold reflectional permutations. For the present treatment 

we adopt the minimum span list (See 2.2331). Thus, some possible representations 

and notations for the prism are: 

3 4 
c3 

SPAN LIST - 234234 

CHORDLIST - 6BCB 
2 5 

1 6 

INCIDENCE MATRIX 

2 3 4 5 6 

FACE INCIDENCE (DUAL GRAPH) - BDE ACDE BDE ABCE ABCD B C D E 
1 11A 

1llB 

-7 

11c 
1D 

FACE LIST, VERTICES - 123 2345 456 1346 1256 

FACE LIST, EDGES - abg bcdh dei efgi aefh 

INTERCHANGE GRAPH - bfgh acgh bdgi cchi dfhi bcdefghi 
1 111 a 

abgi abef abde cdef 1 11 b 
1 1 lc 

1 lld 
1 lle 

1 lf 



Of these various representations, the span list is brief and,being invariant 2-32 

under rotation, easy to permute. We therefore denote each graph by its span 

list in minimal form and label the vertices in the corresponding sequence. Thus 

(234234) = (342342), of which (234234) is minimal. Hence 

3J--p - 4@ = 2@7J 

2 4 3 2 4 3 

The numbers above are the span, not tne vertex values. 

5 2 

Vertex Labels 

2 .?J 

The vertices being numbered, the path list is in the order of the vertex 

couples, the polygonal circuit being taken first, then the chords. Thus the 

nine edges of the prism are, in order, 12, 23, 34, 45, 56, 61, then 13, 25 and 

46. Caution: the polarity of each path follows this numbering. The same rule 

is applied to "self-looped edges," or "slings", i.e. chords with a span of 1. 

Examples: 

6 
5 

4 

3 

6BCB 

6 
5 9 

1 

0 4 * 

3 

6AAA 
Edges 



With non-polygonal forms the numbering of the united circuits must be 2 3/r- 

unified. The smaller circuit retains its original numbering, including the 

uniting edge joined to the lower node. Then the numbering of the nodes or edges 

of the senior partners follows in sequence. Example: 

1 

Q 

8 



Quadrivalent Vertices. Some organic molecules of considerable interest 
d-z -f C’ 

have one or more 4-valent nodes, needing special provisions in our scheme. The 

system so far developed can be most advantageously exploited by treating an n-valent 

node as the collapse of some subgraph on which n edges are afferent. Two possibi- 

lities for a 4-valent node (a) are 

C d 
0-i 

c/ \d 
(a) (b) cc> 

The second (c) has the advantage of adding only one virtual node per 4-valent 

center. guadrivalent centers will therefore be treated as collapsed edges of a 

parental trivalent graph. The adjacent edges (abed) can be divided in three 

different ways: ah/cd, ac/bd and ad/be, hence there may be as much as a three- 

fold ambiguity in the choice of parental graph. This will ordinarily be less 

on account of symmetry. 2.41 

The ambiguity can be fully resolved by the following canons of choice of 

parent graph. 

1. Avoid a separable graph. Hence c ] is related to ;j) and not c- yJ * 

2. Avoid a gauche graph if possible. 

3. Avoid a nonplanar graph if possible. 

4. From the remaining possibilities, choose the graph which, in canonical 

form and listing, stands lowest. For an example, n = 9 

may go into 

(a) (b) 
BCDDB BCCCB [CAUCHE 1 



(a) and (b) are readily reduced to their canonical form. (c) is recognized 

as gauche (see the graph 6CCC as the left part of the isomorphic (c'>-- the 

numbering of a Hamiltonian circuit is displayed to help along), and therefore 

disqualified. In the tables, (a) and (b) are already known as BCDDB and 

BCCCB respectively. By canon 4, the choice is BCCCB. 

The encoding follows the principles for mapping other paths to be detailed 

in Part III. However, the specification of contracted edges (Spiro fusions) is 

given at a separate, first level of priority , to bring structural homologues 

under a common heading. Where symmetries require a choice, the Spiro fusions 

will be mapped on the edge list so as to maximize this vector. I.e., they are 

placed as early in the list as possible. The numbering of vertices and edges 

is retained as given in 2.3. That is, a virtual node.remains in the list. 

The present example becomes 

_ j” _’ 

__’ I 
, 

i.e., the Spiro fushion is mapped on the 3rd edge of the circuit. The coding is 

a reasonable one to mark the vertex group for these figures. Additional examples 

are summarized in Table 2T.7. Applications to complete graphs are detailed in 

Part III. The program contains a sufficient list of canonical forms and synonyms 

to expedite the translation of any vernacular input codes. These manipulations 

are not particularly difficult to program, but as already demonstrated can be 

quite tedious by hand. 



2 3-c 
Planar Mesh Representations. Besides the isometric perspective and 

polygonal representation, any polyhedron can be represented as a planar mesh. 

Consider the polyhedra projected on a sphere. Then choose any face for a base 

and expand it, flattening the rest of the sphere to an enclosed plane. This 

operation shows that any polyhedron has a planar representation (no edges 

crossing); furthermore, any distinct face will give a different appearance 

when expanded. Usually the largest face will give the most nearly conventional 

representation. When the mapping is expanded, this will usually be more nearly 

reminiscent of the usual structural formulas than the more abstract figures so 

far presented. 

The isomorphic variants of planar meshes obtained by choosing alternative 

faces as the base (see Fig. 2.51) are generally very unfamiliar, pointing up the 
.5-/ 

importance of a canonical representation. 

ABC BCDE 
OR OR 
A IJ FGIII 

IOA3 I OA4A 

DEFG 

IOA4B 

ABEFIJ 
OR 

ACDGHJ 

IOA6 IOA6 
WITH MAPPING OF 
BENZOPERYLENE 



Reconstruction of planar mesh from Hamilton circuit representations. 

The polygonal representations of figure 2T.4 and 2T.5 are undoubtedly con- 

fusing owing to the intersection of chords belonging to different faces. A simple 

algorithm can help to resolve these figures; it is also useful for the computer 

reconstruction of planar maps, closer to the chemist's customary models, from 

the canonical codes. 

The main idea is to regard the polygonal form as projected on a sphere, 

the polygon forming the equator. Then, for a planar map, the chords must be 

classified into two sets, one for each hemisphere. Within either hemisphere, no 

chords intersect. The visualization of these structures still requires some 

practised imagination, especially to avoid the identificaiton of the Hamilton 

circuit polygon with any face of the polyhedron. However, as any face will be 

bounded by edges from the cirucit and from one hemisphere, the marking of faces 

is facilitated for chemist and computer alike. In practice the computer should 

carry all the burden of these transformations. 
&. 3 -/ 

The grouping of chords is quite simple. The assignment of N vs. S 

hemisphere is, of course, arbitrary; the first chord is assigned N. Then each 

succeeding chord is tested for intersection with the N set so far. If not, it 

is added to the N set. If it elbes intersect, it should be added to the S set. 

If it also intersects a chord already in the S set, the graph is non planar. Indeed 

this is the most effective algorithm for the purpose. 

Planar meshes come directly from the chord groupings. The chords of one 

hemisphere are merely brought outside the polygon. Thus, for the pentagonal wedge, 

BCCB 



which takes only a topological deformation to yield 

recognizable as 

. \ . . \ . . \ . 
r3 
. \ .’ * .’ ‘\ . : \ - \ \ 

When the map is a 2-connected union an obiious ambiguity may arise, some chords 

intersecting with neither of the remaining sets. This does not impair the con- 

struction of a planar mesh. 

or 

could be 

etc. 

The rule would be: place a chord in the S hemisphere (inside) if it is ambiguous. 

This ambiguity is probably the main source of disparity in conventional chemical 

symbolism; related to it is the choice of face to circumscribe the map. 



Nested parenthesis notation and combinatorial generator. 

Since the chords of one hemisphere do not intersect, the labels that signify 

their start and end have the properties of nested parentheses, the matching of left 

and right parentheses being implicit in the description. For the two hemispheres 2. SC51 

of BCCB we have 

pJ = )Q) + (Q 

and superimposing the parentheses and brackets we have a descriptive formula 

([)(I[)3 

This is economical in the computer program since it codes the signs as 2-bit 

numbers, the formula becoming 

02103213. 

Such a formula can be translated into a usable mesh diagram on sight: 
1 I 
-2-i-o--3 

It is also the basis of a rather more efficient generator program than the one 

mentioned in 2.232. Besides the economy of compact representation of the codes 

as quaternary numbers, it is easy to restrict the generator to minimize fruitless 

efforts with meaningless codes (e.g., extra right parentheses) and redundant forms 

(interconversion of () and [I; some rotational symmetries). The notation is 

already explicitly limited to Hamiltonian planar maps. For certain investigations, 

additional restrictions like absence of triangles, cyclic connectedness at a level 

of at least 3 (i.e. polyhedra), 4, or 5, and other features can be rather easily 

added. However, the output is replete with isomorphisms, for which the technique 

of 2.23 2 is still the most efficient. 



Further Developments in the Theory of Trivalent Graphs. 

Polyhedra. Since the above material was composed and most of the computations 

run, some additional contributions in the literature have come to light. 

It was especially surprising that the enumeration of the polyhedra had 

not been worked out already in Euler's time or earlier, in view of classical .% ,$ / 

insight into the five regular polyhedra (of which three, the tetrahedron, the 

cube and the dodecahedron are included in our trivalent graphs, n4, ng, and n20 

respectively. In 1900, however, Briickner%onstructed the trivalent polyhedra 

for n up to 16, and we could confirm the equivalence of his set with the results 

of our computer programs through n = 12. 

Little additional work has been done on this problem, except by Briickner. 

However (and independently of the present studies!) Grace has just published a ;T.-, so 

dissertation on the computation of the polyhedra through n =I8 (Grace, 1965). This 

work faces formidable problems in testing for isomorphism (18! = 1015)-wise 

permutational searches being prohibitive. Mathematical theory evidently still 

lacks an analytical approach to this problem. Grace then used a conjectural 

criterion of isomorphism, "equisurroundedness". According to Grace "Equisurrounded- 

ness is a necessary but not a sufficient condition for isomorphism. The necessity 

is obvious...." He gives a counter-example with 17 faces to show the insufficiency. 

It is therefore uncertain whether he may have retained an incomplete list of 

polyhedra, as it is unknown whether some smaller polyhedra than with 17 faces 

may be equisurrounded with, but not isomorphic to, members of the list that has 

been retained. Grace did find some forms that Briickner had overlooked. 

The polyhedra through n = 18 have been verified to have Hamilton circuits, 

including the classes n14, n16, and n18 as listed by Grace. It should be remarked .. 
7 &: 3 

that the test for isomorphism (see 2.232) of polygonal graphs is relatively efficient, . 

since << 2" operations (contra n!) can establish (a) whether a graph has a Hamilton 

circuit and (b) if so, establish a canonical form for comparison with other graphs. 



This test could be applied to Grace's for generating polyhedra program to discover 

any polyhedra smaller than n q6(Tutters example) that might lack a Hamilton circuit, 

(see 2.230) and a more rigorous criterion of isomorphism than equisurroundedness 

can furnish. 

The task of scrutinizing polyhedra for Hamilton circuits is simplified 

considerably by the reducibility of a triangular face. Consider a trace of a 
z, Gf 

Hamilton circuit at its first incidence on a triangle: 

Plainly if all 3 of its nodes are to be visited, it must be at this occasion. A 

path -1-2 without 3 would leave 3 stranded, i.e., would make a Hamilton circuit 

impossible. The complex -123- is therefore tantamount to a single node. 

ORDER = N ORDEK = (N-2) 



Thus, if the (n) graph has a triangular face, and a Hamilton circuit, some (n-2) 

graph will likewise have a Hamilton circuit. Without formal proof, we assert 

that if (n) is a polyhedron, so is (n-2). ." 2, .,- ..- , ir -' 

By induction we may then pass over (n)-rojvhPdra that have any triangular 

face , provided we have scrutinized all the (n-2) cases, which can be handled in 

part by the same process. As shown by the following table, this argument reduces 

the work for the polyhedraup to 18 vertices from 1555 down to only 55 cases. 

N 

4 

6 

8 

10 

12 

14 

16 

18 

Total Polyhedra 

1 

1 

2 

5 

14 

50 

233 

1249 

Non-triangle-containing 
Polyhedra 

0 

0 

1 

1 

2 

5 

12 

34 

2. G-B 

Total n 2 18 1555 

- 

55 



The listings of tables 2T.2 anticipate the polygonal graphs through 

12 vertices, that is 8 faces, (or 7 rings within the meaning of the Ring Index). 

From Grace's work we can readily enlarge this anticipation to 18 vertices, (11 

faces or 10 rings) but have not made the extensive enumerations called for. .;3.d- 

The count of unions and particularly of gauche graphs increases even more 

rapidly than that of the polyhedra. On the other hand, the notational system 

will accommodate any polyhedron that has a Hamilton circuit, as well as unions 

of such polyhedra; such structures can be coded as they are defined without 

being anticipated in advance. The generator would then be confined to an 

empirical list of previously discovered forms. This may be a practical 

necessity for the highest order forms in any case, where the rapidly increasing 

number of possible arrangements contrasts with relatively few realizations. 

The most complex rings, in practice, are related to polyhexacyclic L- -* 

hydrocarbons. This special class can be accommodated by another approach, 

elaborated in Part 6. This involves the mapping of the polyhexacycle on a 

selection of "tiles" from a continuous hexagonal tessellation or mosaic. An 

enumeration of these forms is also given in Part 6. 



Symmetry classification. 

The symmetry of the vertex group plays a central role both in mapping ..z -/<:. 

known structures and in the generation of non-redundant lists of hypothetical 

structures. The essential problem is that the same topological relationship 

may have many alternative representations, which is to say that the diagram can 

be manipulated so that it is self-congruent. If the vertices are labelled, 

different sets of vertices will describe the same figure. E.g., 

Since we are dealing with topological groups, not rigid bodies, the symmetries 

carry even further, i.e. the tetrahedral cases are not distinguished (stereo- 

isomerism being dealt with at another level). 



The polyhedral representations generally make the set of symmetries 
,c. 7'L/ 

self-evident (which the planar ones sometimes do not). For example, the prism 

has 12 equivalents 

-- -- 
> r 3 rotations 

! 
-- +-- 

I 

2 rotations 

1 2 reflections 

while its Hamiltonian polygon displays only 4. 

Although not a profound task, the manual enumeration of the symmetries, say 

for table 2T.2, would be a tedious one and an algorithmic approach would be 

preferred. 

One approach is to generate the whole symmetric group, Sn, the n! 

permutations of the vertex codes, and test each of these for congruence with 

the canonical form. But this is almost prohibitively costly for n - 10, as lO! = 

3,628,800 trials, or probably about one minute of computer time per set. 

Instead we can rely upon the set of Hamiltonian circuits, where they 
2 7‘9.3 

exist. Each symmetry operation will generate a corresponding representation of 

a Hamilton circuit. Consequently the set of symmetries will be included in the 

set of Hamilton circuits. These can be generated by a binary search of << 2" 

trials, far less than the n! of the whole symmetric group. In fact this list 

of Hamilton circuits was saved from the initial computation of table 2T.2 for 

use as the input data of this calculation. 



The algorithm can be summarized #Z. 7/ 

1. Take E as the canonical form from table 2T.2. Convert the chord list to an 

incidence matrix (connection table) of the n vertices with one another. 

2. Test E for its symmetry on the plane. That is, test E under l(l)n-1 steps 

123...n of rotation of its indices [the permutation cycle (234 
. . . ,)I before and after 

reflection, ( 123..n n..321)' When the permuted incidence matrix becomes congruent with 

E, a symmetry operator is revealed. This set of operators is saved. 

3. Each Hamilton circuit is tested for potential congruence with E under 

rotation and reflection. The isomorphisms (indicated in table 2T.2) cannot be 

made congruent to E and are rejected. The congruences are saved as equivalents 

under symmetry. 

4. Each of these is also subjected to the operators found in step 2. 

5. The list is sorted and redundancies are removed. This can also be done 

prior to 4 if the list is a long one. 

6. The list now contains all of the symmetries expressed as permutations. 

Further classifications can be made, as indicated, on this list. For many 

purposes it can be used as is. 

Example. Consider the prism, BCB 

a. This is readily translated into 

-- 123456 plus 13,25 and 46. 

2 cc> 

(B) 1 3 

CD 

4 (B) 

5 

b. E is of course 123456. The symmetries of rotation (C,) and reflection 

(I) are readily found and give 

123456 456123 654321 321654. 2 

3 1 

4 6 

1 - i 
:. , , /’ 

c321654] 



7. Our program gives the following additional Hamilton circuits. For efficiency, 

the search was initialized at vertex 1 and considered only the paths 12 and 13 

as candidates for the first trial choice. That is, the rotation and reflection 

operations were anticipated. Hence the circuits as found are potentially, not 

actually, congruent with E. At this point they are 

125643 134652 132546. 

The first two require a rotation; the last is already congruent. When rectified 

we then have 312564 
2 / ,' ,,i- 

312564 213465 132546 

8. These are used as operands under the operators found in 2. Together with E 

we then have 

E 456123 654321 321654 
312564 564312 465213 213465 
213465 465213 564312 312564 
132546 546132 645231 231645 

9. After sorting and weeding out we have the 12 cases. 

123456 213465 312564 456123 546132 645231 

132546 321645 321654 465213 564312 654321 

For small n of course we can more readily operate on a visual image of the prism 

at speeds that compare with the computer. But recording the results becomes a 

bottleneck in more extensive work. 



General Svstematics of Graphs. Composition of graphs from Hamilton 

Circuits: 2-connected graphs. 

2. 72 

A more general approach to the description of circuit-free graphs has 

been devised based on the level of connectedness of the graph, i.e., the 

least number of cuts needed to separate the graph. 

The cases of chemical interest are all 2-connected, and have already been 

discussed in section 2.262. 
2.73 

Canons of Analysis. A 2-connected graph found to be circuit-free is 

subjected to trial dissections of its bilineal unions, designed to show a con- 

struction under the following criteria. The principle of analysis is to 

obtain a dissection of the graph into 

1. A minimum number of circuits 

2. At the lowest level of connectedness. 

In effect, the dissection maps the circuits of the graph on to the nodes of 

a "hypergraph." If a Hamilton circuit is present this hypergraph consists of 

a single node, Otherwise it may be a node-pair (i.e. a pairwise union of 

circuits) or in principle a more complex tree or even a generalized connected 

graph. The hypergraph is then evaluated according to the same principles as 

laid out for chemical graphs -- the nodes being the circuits; the edges being 

the sets of circuit-joining edges. We can therefore add the criterion: 

3. Giving the maximum valued hypergraph. 

The evaluation of the hypergraph may entail searching its set of circuits, 

as may be done recursively to any depth. 



This analysis leads to some predictively useful principles concerning 2. qf 

the occurrence of non-Hamilton graphs. A given circuitable graph is readily 

analyzed for the presence of three kinds of edges (1) the most usual edges 

participate in some but not every circuit (2) "must-edges" participate in 

every circuit, or (3) "non-edges" participate in no.circuit. 

A bilineal union in which a non-edge of either or both component graphs 

is spliced then forms an HC-free graph. 
,z. 73.- 

The same approach can be used for 3-connected graphs. In this case, a 3-cut 

residue is obtained by extracting one node from a graph. If one of the cut 

edges is a must-edge, it will retain this property in its compositions. Thus, 

in Tutte's example, replacing 3 nodes of a tetrahedron by a 15-node residue with 

a must-edge results in a 46-node circuit-free graph. (Fig. 2.23 ). 

There is no present compulsion to rigidify the notation for such 

complex graphs; one suggestion is implicit in the diagram: 

(38CGDIGDIDGE*CD:231:C*DIGDFD) 



This 38-node graph is the same as 2.78d; the polygons are oriented in 

canonical form. The *'s signify the extracted notes whose removal leaves the 

3-cut graphs; the 231 specifies the splicing of the cut edges. Note that 

the subgraphs to the right and left of the dashed lines are the same. 

The construction shown follows the rule of dissection into maximum 3-connected 

circuits. 

This graph which is the same as 2.78d is almost certainly the a?,78 

smallest non-Hamiltonian polyhedron; it is known to be the smallest which 

is cyclically 3-connected. All candidate graphs n 2 24 have been 

explicitly examined. Its construction may be clarified by noting the must- 

edge (marked by arrow in 2.78a). A residual 3-cut graph can be planted, as 

shown, in 2.78~ and 2.78d in configurations inconsistent with must-edges in these 

figures. 2.78~ is Tutte's 46-node graph, already figured at 2.23. The dashed 

lines on 2.78d correspond to those on 2.77. 
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Coding and Reconstruction of Hamilton Circuits ;‘. YO 

Each graph is represented as a Hamilton circuit projected on the boundary 

of a regular polygon with n vertices. Joining these 11 vertices are 5 chords, 

since each vertex is trivalent. The locations of these chords are specified by 

k characters, integers being replaced by the alphabet to obviate punctuation*. 

To reconstruct the graph: 

1) Draw the n-gon 

2) Start at an arbitrary node and draw a chord whose span corresponds to 

the first character 

3) For each successive character, move to the next unoccupied node. - 

Hence, the steps for 6BCB are: 

occupied 

6 6~ ~Bc 6BCB 

*A 1 F 6 K 11 P 16 U 21 

B 2 G 7 L 12 Q 17 v 22 

c 3 H 8 M 13 R 18 W 23 
D 4 I 9 N 14 S 19 X 24 

E 5 J 10 0 15 T 20 Y 25 



Appendix: 

A1gorith.n for finding hamilton circuits of a cyclic graph. 

This is illustrated for an undirected, trihedral graph but should be 

generalized without difficulty in an obvious way. Tne input is a description 

of the connectivity of the graph. T>e essence of the routine is to build 

a table of sets of edges so that just two edges incident in each node appear 

in any row of the table. Tne first node is chosen arbitrarily. its three 

incident edges are marked current and open. T?ne circuit-fragment table 

is started with three rows by listing the 3 pair-wise choices among the 

current edges. 

1. Select an open edge. The two adjacent edges become the trial 

edges. 

2. How many trial edges match the current list: none, one, or two? 

a. If none match, close the selected edge and replace 

it on the current open list by the two trial edges. 

Scan the circuit-fragment table. Each row in which 

the selected edge appears is replaced by two rows, one 

for each trial edge. Each remaining row is replaced 

by one row showing both trial edges. Go to 1. 

b. If one matches, a circuit of the graph has been closed. 

Scan the circuit-fragment (c.f.) table contrasting the 

matched edge with the selected edge. Each c.f. where 

neither appears is deleted. If one of the two appears 

on a c.f., this is augmented by the trial edge. If both 

appear, the c.f. +W stands as is unless a tracing of 

the c.f. shows it to be prematurely closed,whereupon it 

is deleted. Go to 1. 



C. If both match two adjacent f aces of the graph hsve been 

closed. The Ireceding subroutine is revised in an 

obvious way to close o-&t both matched edges: those c. f. 

rows are retained which are compatible with the indicated 

edge allocations. Go to 1. 

The process is terminated when the open edge list is vacated. If 

this leaves some nodes unused,no fiamilton circuit is possible. Otherwise, 

the final closure of circuit-fragments leaves a table of circuits. This 

must still be scanned to separate tn e Hamiltonian circuits from the set 

of pairwise disjoint circuits. 

The efficiency of the algorithm depends on keeping the current c. f. 

table as small as possible. This is accomplished by a lookahead routine 

which scans prospective choices of current edges to seek the promptest 

closure of a face. 

For an example, Tutte's 1;6 node non-Hamiltonian graph has been searched 

exhaustively. This required a c. f. table of 12,477 rows consuming 29 

seconds of a program on IBN 7090. Searches yielding a11 the circuits of 

other large Hamiltonian graphs required a comparable effort. 

This procedure may have some utility for studies on classification, 

isomorphisns,and symmetries of abst ract graphs and other network problems 

for w‘nich the set of Hamilton circuits is often an advantageous approach. 

A complete description of the computer program is available from the author. 



REFERENCES 

1. Tait, P. G., Phil. Mag. (Series 5), 17: 30 (1884). - 

2. Tutte, W. T., J. London Math. Sot., 21: 98 (1946). - (See also reference 3) 

3. Tute, W. T., Acta Math. (Hung.), 11: 371 (1960). - 

4. Bruckner, M: Vielecke und Vielflache. Teubner, Leipzig, 1900. 

5. Grace, D. W., Computer Search for Non-Isomorphic Convex Polyhedra, 
Stanford Computation Center Technical Report No. CS15 (1965). 



PART II. GENERAL TABLES. 

2T.l Count of cyclic trivalent graphs. 

2T.2 Symbolic listing of cyclic trivalent graphs n 2 12 
and polyhedra n = 14. 

2T.3 (Deleted) 

2T.4 Nonpolygonal cyclic trivalent graphs n ( 12. 

2T.5 Figures for graphs n 2 12 with chemical examples. 

2T.6 Figures for polyhedra n 114 which have chemical 
examples. 

2T.7 Quadri-trivalent graphs. 



2T.1 

COUNT OF CYCLIC TRIVALENT GRAPHS 

[and genera of known chemical graphs] 

Vertices 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

1. 26 

Number of 
Chemical Rings+ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 14 

Polyhedra 

With Hamilton Circuits Without Hamilton Circuits 

Unions Gauche Forms 
(Planar) (Non-Planar) Planar Unions 

I 

I 1* I 
I 
I 1* 

0 

0 

0 

0 
I 
1 1* 1* 0 
I 

1* 3* If01 _------------- l 2* 10 [91 1 
I 3[01 
I 

I 5 r41 37 [201 18[01 
I I 

:-- 
----- - -_ 

14 [3] 183j [35] 
I I I 133[01 I-- --- --- -- 

-__, I 
_-.__ 

_.----- 
___- 

- 50 jf31 ; [451 [Ill 

2333;[2] 1 [461 [lOI 
I I 

12493,[5] I 
I r251 (51 

1bl 
/ 
I (211 [41 

I 
1[11 ; 161 [II 
I ! 
)21 ; 191 [II 
/__- _- -_I 

101 1141 [31 

[Numbers in brackets are the count of genera of known examples from the Ring Index.] * signifies all. 
Spiro forms are excluded from this count. 

' Figures drawn herewith. 
' Listed herewith 
: According to Grace (1965). 
This is one less than the number of faces of a polyhedron. 



2T.2 SYMBOLIC LISTING OF CYCLIC TRIVALENT GRAPHS. 

Polygonal Forms: [Planar (polyhedral, unions), Nonplanar) 

2T.20 

2T.21 

2T.22 

2T.23 

2T.24 

n = 4, 6, 8 

n = 10 

n = 12 Planar polyhedra and unions 

n = 12 Nonplanar forms 

n = 14 Polyhedra only (with Grace [1965] 
catalog number) 

JJonpolygonal Forms: 

2T.25 n = 8, 10, 12 Summary table,(see 2T.4). 

The canonical form is shown first on each line. Isomorphs (unrelated by 
rotation or reflection) are then shown. See 2T.254 for coding. 



2T.20 

POLYGONAL GRAPHS 

POLYHEDRON 
4 VERTICES 

4A BB 

PLANAR UNION 

46 AA 

6 VERTICES 
POL’rHEDRON 

6A BCB 

PLANAR UNIONS 

60 AAA 
6C ABB 
6D ACA 

GAUCHE GRAPH 

6X ccc 

8 VERTICES 
POLYHEDRA 

8A BCCB BDDB 
8B CECC 

DLANAR UNIONS 

8C AAAA 
8D AABB 
8E AACA 
8F ABCB 
8G ABDA 
8H ACDB 
81 ADDA 
8J AEBB 
8K AECA 
8L BBBB 

GAUCHE GRAPHS 
ACCC 
BDCC 
CDDC DDDD 



10 VERTEX GRAPHS 2T.21 

POLYHEDRA 
BCCCB BEFDB 
BCDDB BCEFC 
BDERB 
BDECC 
CFDEC 

PLANAR UNIONS 
AAAAA 
AAABB 
AAACA 
AABCB 
AABDA 
AACDB 
AADDA 
AAEAA 
AAEBB 
AAECA 
ABBBB 
ABBCA 
ABCCB 
ABCDA 
ABDDB ABEBC 
ABEAB 
ABEDA 
ABFBB 

GAUCHE GRAPHS 
AACCC 
ABDCC 
ACCEA 
ACDDC ADDDD ADDEC 
ACDEB ADEF B 
ACEEA AEEEA 
ADECD 
ADFCC 
AGCCC 
BBCCC 
BCDCC BEFCC 
BDCDB BEEEB 
BDDDC BEDCr) BEDEC 
BDDEB 
CCECC 
CDEDC DFDED 
CEEDD CFDDD CGDCD DEEED 
CEEEC CGCCC EEEEE 

ABFCA 
ACACA 
ACECC AECEC 
ACFCB ADFDB 
ACFDA 
ADADA 
ADBEA 
AEBEB 
AFCEB 
AFDEA 
AFFBB 
AGBCB 
AGCDB 
AGDC 4 
AGEBB 
AGECA 
BBBCB 
BBCDB 
BBEBB 



12 VERTEX GRAPHS 

BCEFDB 
BEBEDB 
BEHECC 

BDHOOB 
BFBFCC 

BFCFDC 

DHFDFD 

POLYHEDRA 
BCCCCB BFHFDB 
BCCDDB BCCEBC 
BCDEBB BCEBDB 
BCDECC BCFCEC 
BCDFCB BCGDBD 
BCFBEB BDFBDB 
BCFFBC BCCCEB 
BDECDB BEGEBC 
BOFCEB BDGEBD 
BDFDEC BEGECD 
BOGDEB 
BFBFBB 
CGEGEC CICCCC 
CHFCFD CIFCFC 

PLANAR UNIONS 
AAAAAA 
AAAABB 
AAAACA 
AAABCB 
AAABDA 
AAACOB 
AAADDA 
AAAEAA 
AAAEBB 
AAAECA 
AABBBB 
AABBCA 
AABCCB 
AABCOA 
AABDOB AABEBC 
AABEAB 
AABEOA 
AABFAA 
AABFBB 
AABFCA 
AACACA 
AACECC AAECEC 
AACFBA 
AACFCB AAOFDB 
AACFOA 
AAOAOA 
AAOBEA 
AADFAA 
AAEBEB 
AAEFAB 
AAEFBC 
AAEFDA 
AAFFAA 
AAFFBB 
AAFFCA 
AAGABB 
AACACA 
AAGBCB 
AAGBOA 
AAGCOB 
AAGDOA 
AAGEAA 
AAGEBB 
AACECA 
ABBABB 
ABBACA 

AB88CB 
ABBBOA 
ABBCOB 
ABBDAB 
ABBOOA 
ABBE88 
ABBECA 
ABCBCA 
ABCCCB 
ABCCOA 
ABC000 
ABCEAB 
ABCEOA 
ABCFBB 
ABCFCA 
ABOACA 
ABOEBB 
ABOECC 
ABDFBA 
ABOFCB 
ABDF DA 
ABEAOA 
ABEBEA 
ABEEAB 
ABEFAA 
ABEFOB 
ABFAOB 
ABFBEB 
ABFFAB 
ABFFBC 
ABFFOA 
ABC080 
ABCCAB 
ABGDEA 
ABGFBB 
ABGFCA 
ABHBCB 
ABHBDA 
ABHCAA 
ABHCOB 
ABHOAB 
ABHOOA 
ABHEBB 
ABHECA 
ACAACA 
ACACOB 

ABBOBC 

ABCEBC 

ABFCEC 

ABGDBO 
ABGOAC 

ABGBCC 

ABGBEA 
ABGCEB 

ABHDBC 

ACAOBC 

ACAOOA 
ACAEBB 
ACAECA 
ACEBOA 
ACECEA 
ACFBOB 
ACFCEB ACGEBO 

AECGOB 
AGEBFC 
AGECFO 
AOBEDB 
AOBFDA 
ACGEEA 
AGDCEB 
AECCEA 

AHFOBE 
AHFDFA 

AHFCFB 
AOHFCB 

ACFOEC 
ACGBBC 
ACGBOA 
ACGCEA 
ACGOEB 
ACGEAC 
ACHBBB 
ACHBCA 
ACHCCB 
ACHCOA 
ACHOAA 
ACHDDB 
ACHEBC 
ACHEOA 
ACHFBB 
ACHFCA 
AOAOOB 
AOAEDA 
AOAFBB 
AOBGBB 
AOCADA 
AOGECO 
AWABB 
AOHEBB 
AOHECC 
ADHFOA 
AEAFCB 
AEBGCB 
AEGAEA 
AFAFAA 
AFAFOB 
ACBGBC 
AGEGEA 
AHBOEB 
AHBEEA 
AHBGBB 
AHCGCB 

AHECFC 

AGOBFB 

AHEBFB 

23.22 

AHOGDB AHEGBC 
AHEAEB 
AHEGDA 
AHFAEA 
AHFGBB 
AHHBCB 
AHHCDB 
AHHDDA 
AHHEBB 
AfBBBB 
AIBBCA 
AIBCCB 
AIBOOB .IIBEBC 
AfBEDA 
AIBFBB 
AIBFCA 
AICACA 
AICECC AIECEC 
AICFCB AfDFOB 
AIDADA 
AIDBEA 
A fDFAA 
A IEBEB 
AIEFBC 
A IEFDA 
AIFFBB 
AIFFCA 
A IGBCB 
A IGCDB 
A ICODA 
AIGEBB 
A IGECA 
BBBBBB 
BBBCCB 
BBBOOB BBBEBC 
BBBFBB 
BBCECC BBECEC 
BBCFCB BBDFOB 
BBEBEB 
BBEFBC 
BBFFBB 
8BGBCB 
BBGCOB 
BBGEBB 
BCBBCB 
BCEKDB 
BCHCDB KHDBC 



2T.23 
12 VERTEX GALJCHE GRAPHS 

AAACCC 
AABDCC 
AACCEA 
AACDDC 
AACDER 
AACF EA 
AADECD 
AADFCC 
AAGCCC 
ARBCCC 
ABCDCC 
ABDCDR 
ABDCEA 
ABDDDC 
ABDDEB 
ARDEEA 
AREECD 
ABEEER 
ABEFCC 
ABFACC 
ABHCCC 
ACACCC 
ACCDDA 
ACCECC 
ACCEDR 
ACCFDA 
ACCGBB 
ACCGCA 
ACDDEA 
ACDEDC 
ACDEEB 
ACDFCC 

AEFBFB 
AEGECF 
AFAFCC 
AFCEFC 
AFGEFA 
AGCCFB 
AHCDFB 
AHDGCC 
AHECDE 
AHHCCC 
AIBDCC 
AICDDC 
A ICDEB 
AIDECD 
AIDFCC 
AIGCCC 
BBBDCC 
BBCDDC 
BBCDEB 
BBDECD 
BBDFCC 
BBGCCC 
BCBCCC 
BCCDCC 
BCDCDB 
BCDDDC 
BCDDEB 
BCEECD 
BCEEEB 
BCEFCC 
BCHCCC 
BDCE CC 
BDDCDB 
BDDEDC 
BDDEEB 
BDDFBB 
BDDFCC 
BDEEDD 
BDEEEC 
BDEFCD 
BDEGCC 
BDFBCC 
BDFFBD 
BDGDCD 
BEECEB 
BEFCEC 
BFFBFB 
cccccc 
CCDDCC 
CCEDDC 
CCEECC 
CDEEDC 
CDFEEC 
CDGCDC 
CDGDEC 
CDHDCD 
CEEEEC 
CEFEED 
CEFEFC 
CEGCEC 
CEGDED 
CFFEEE 
CFFFFC 
CFFGEC 
DEFFED 
DEFGDD 
DHDEED 

AGCGCC 

AADDDD 
AADEER 
AAEEEA 

AADDEC 

AIDDDD 
AIDEEB 

AIDDEC 

ABEDDD 
ARF EBD 
ABFEAC 

ABEDEC 

ABFEEA 

ABFCDD 

ABFRDC 
ABGCCD 

BBDDDD 
BBDEEB 

BBDDEC 

BFHFCC 
BFHEEB 
BCEDDD 
BCFEBD 
BEHDDC 
BCFBDC 
BCGCCD 

ACCFBC 
BCEDEC 
BDEGDB 
BFHDDD 
BDCEDB 
BDHDCC 

BCFCDD BFHDEC 

ADDDFA 
AFDEFD 
ADDEFB 
ACEEDD 
AEEFFC 
ADG EFA 
A EGGDB 
ADHEEA 
ACGCCC 
AEFDFD 
ADEFFB 

ADDGDB 
ACFDDD 
AFDFFC 

AEFGEB 
AEEEFD BFGGCC 

BEDDEB 
BEFDED 
BDEFEE 
BEEFBE 
BEDEEC 
BDFCDC 
BDGCCC 
BEFFDD 

EEDFCB 
BFGDFC 
BEDEFE 

BFGEFB 

AECGCC 
ACFGEC 
AECFFP 
AECEFb 
ADFFFA 

ACDF EA 
ACDGCE 
ACDGDA 
ACEEEC 
ACEFCD 
ACEFEB 
ACEGAA 
ACEGCC 
ACEGDB 
ACFFAC 
ACFFBD 
ACFFEA 
ACFGDA 
ACGDCD 
ACGGBB 
ACGGCA 
ACHDCC 
ADDFFA 
ADECFA 
ADEEED 
ADEFDD 
ADEGBA 
ADFCFB 
ADFDFC 
AOFFCD 
ADFGBB 
AOGOOD 
ADGOFB 
ADHCDB 
ADHDDC 
ADHDEB 
AEAEEA 
AEEFEA 
AEEBFA 

ADGGCE 
AFFFFA 
AEFFFB 

AEEGDD AEf-FDE 
AGGGBB 
ATFEEP 
AHF CCE 
ADDGEA 

ADEEFC 
ADLGDC 

AEGEFB 
ADFGCC 
AEFFCE 
AEBEEB 
AEGODE 

AGCDFC 
AFGBFB 
AGOGCD 

AHEEBE 
AHDDDE 
AHDEFE 

AHDDFC 

AEFGAE 

AHEEFA 
AEEEEE AEEGEC 

AGDFFB 

AGGCFE 

AFCFFB 

AGDDFD 

EEDFDC 
BDFDDD 
BFCEEC 
BEEGDC 

BEEEED 
BEFFCD 
BFEEEE 

BEEEFC BEFDFC EEFGCC 
BEGCDC BFEEFD BFEFFC 
BFEGEC ADEGEB 

BEBECC 
BEEFFB 
EEGDDD 
BEFFEC 
BFFDFD 

BEEGEB 
BFEFDE 
BFFFFB 

BEFCFE 
BFEGDD 

CCF FCC 
CCFDDD CCFDEC 

AGEFFA 

AFGCFC 
AEFGCD 

CDFEDD 
CGEEFD 
DDFFDD 
CFFEFD 
EFGEFE 
CGEEEE 
CEFFDD 
CHEDFD 
EGEGE E 
CHDDED 
CHFCEE 
CFFGDD 
FFFFFF 

CDFFCD 
CIDDDD 
DDGEDD 
CIEDFC 

CDGDDD 
CIEDDE 
EGEFFE 
DFFFEE 

DGEFEE DHEEEE 
DGEFFD 

DHEEFD 

CHEFCE 

AEGDFC 

CIEECE 
CHDDFC CHEDEE 

DEGEED 
CIDECD 
CGEFFC 

DFFFFD 
CGEGDD AHDECE CICDCD EFFFFE 



2T.24 
THE FIFTY POLYHEDRA WITH 14 VERTICES.* HAHXLTON CIRCUITS 

GRACE 

5;iST I 
1.0 
2rr 
3ro 
4eo 
5.e 
6*. 
70. 
80. 
9*. 

10.0 
11.0 
120. 
13.0 
140 0 
15,. 
16.0 
1 7a  l 

180. 
19.r 
20.0 
21.6 
22a* 
23ee 
24e l 

250. 
2660 
27** 
28.a 
29e. 
30eo 
31.e 
32.0 
33.0 
34er 
350 0 
36*B 
31b. 
38ae 
39eo 
404 d 
41.0 
42me 
43.e 
44er 
45.4 
460. 
470. 
48.e 
49be 
5044 

BDHDGBB 
80 I EGDB 
BDHFGBD 
BEIFDFC 
BOFOFDC 
CJHECGE 
CJGDHFC 
CfCOHFD 
EKCCCCB 
BCCCEBC 
BCCUEBB 
BCOEBCB 
BCCFCEC 
BCFCFCB 
CHFIGEC 
BCCCDBD 
BCGDGEC 
BDFDF CB 
BDGEGEC 
BCCEFDB 
BC EBEDB 
BDJEBDB 
80 JCDOB 
BCCFFBC 
BDECEDB 
80 JDECC 
BCGHFBC 
BEJFDEC 
BC IFCFB 
BDJDEBB 
BCDFBDB 
BCCFBEB 
BCDFCEB 
BFCGDEB 
BCDHEBC 
BCGDBEB 
BDC68DB 
BCHCCBB 
BDFBECC 
BCFGBDC 
BCIEBFB 
BEHECFB 
BDFBEBB 
BCFBFBB 
BDCEBEB 
CKEIECC 
BECECEB 
BCFBGCB 
8CtEGBC 
BDHEBFB 



2T. 25 

YOVP3LYGONAL GRAPHS 

VERTICES VO. 

8 1 
RA:l,A:ACA 

10 5 
lOA:l,ll:AACA 
1OAllrlO~ABDA 
lOAtl,ll:ABDA 
1OA:lr 10:AEBB 
lOAZl,lO:AECA 

12 30 
12Allrl4:AAACA 
12A:1,13tAABDA 
12A:l,l4:AABDA 
12Allrl31AAEAA 
12Atir13rAAEBB 
12A:l,l3rAAECA 
12Allrl4:AAECA 
12A:lr14:ABBCA 
12A:l,l3:ABCDA 
12A:l,13:ABEAB 
12A:1,12tABFBB 
12Allr13rABFBB 
12A:lr 12:ABFCA 
12A:1,131ABFCA 
12A:l,l4:AaFCA 
12A:l,l2tACACA 
12A:1,12!ADADA 
12Allr12:ADREA 
12Allrl3tADBEA 
12A81,14ZADBEA 
12A:l,14:AFDEA 
12A:l,121AGBDB 
12A:1,121AGDDA 
12Allrl2:AGCDB 
12A8lr12:AGEBB 
12A:l,13:AGEBE 
12At1,12:AGECA 
12Allrl38AGECA 
12A:l,13:133EB3 
12ACA:8,8tACA 



2T.4 NONPOLYGONAL PLANAR GRAPHS, n = 8, 10, 12. 

2T.40 

2T.41 

2T.42 

deleted 

Nonpolygonal graphs mapped on Hamilton circuits. 

Nonpolygonal graphs for which chemical examples 
are known. 

N.B. More detailed figures for some of the above are available in 2T.5. 
2T.25 summarizes this list which is purportedly complete. 



2T.410 

NONPOLYGONAL GRAPHS MAPPED ON HAMILTON CIRCUITS 

Q \ \ \ 
(8A:1,8:ACA) (12A:l&:AAACA) (12A:1,12:AGCDB) 

0 I II \ / 
* 63 \ 

(12A:l,lhBBCA) (12A:1,12:AGDDA) 

0 / \ + \ 
6) \l I 

(12A:1,12:ACACA) (12A:l,lhAECA) 

\ 

8 

\ 

\ 

\ 63 \ \ \ 
(12ACA:8,8:ACA) (lZA:1,12:AGEBB) 

(12A:1,12:AGBDB) (12A:1,12:AGECA) (~~A:~,~o:ABDA 

Q 

I \\ 

\ 

0 I \ \ \ \ I 
(12A:l,lkABFCA) (12A:1,13:AAEAA) 



2T.411 

c&a I \ \ Q \ CJ \\ 
(12A:1,12:ABFBB) (12A:1,12:ADBEA) (12A:1,13:AAEBB) \ 0 \ \\ t \ a \ @ 

I 
\ 

(12A:1,13:AAECA) (12AzlJ2:ABFCA) (12A:lJbDBEA) 

\ 
0 ’ I \ Q I \ 

(12A:1,13:ADB?ZA) (12A:1,13:BBEBB) \ 0 \ \ 

@ 

\ 

\ 

\ 0 \ 
(12A:1,13:AGEBB) (UA:1,13:ABFBB) (12A:l,lb:AFDEA) \ 0 \ \ 0 I \ \ CB \ \ 

(12A:1,13:ABCDA) (12A:1,13:AGECA) (12A:1,13:ABFCA) 

0 \ I @ ‘I / 
\ Q \ \ 

(12A:1,13:AABDA) (12A:1,12:ADADA) 



CODE 

(8A:1,8:ACA) 

(12ACA:8,8:ACA) 

2T.420 
NONPOLYGONAL GRAPHS WITH KNOWN CHEMICAL EXAMPLES 

MAPPING ON 
UNDERLYING GRAPH . 

POLYHEDRAL CHEMICAL EXAMPLE 
FORM WITH RR1 NO. 

6411 

7038 

\ 

@ \ 
\ 

(12A:1,14:AAECA) 

7044 

+3@ - 
7404 

(12A:1,12:AGEBB) 

Q 



CODE 

(12A:1,12:AGECA) 

(12A:1,13:AGECA) 

(12A:1,12:ABFBB) 

(12A:1,12:ABFCA) 

MAPPING ON 
UNDERLYING GRAPH 

@ \ 

\ 0 \ \ 
\ 0 
\ 6Y \ 

POLYHEDRAL 
FORM 

2T.421 

CHEMICAL EXAMPLE 
WITH &&J NO. 

7211 

7393 

9603 

7296 



2T.5 FIGURES FOR GRAPHS, n 5 12. 

2T.50 n = 0, 2, 4, 6 all forms, and n = 8 polyhedra. 

2T.51 

2T.52 

2T.53 

2T.54 

Besides the figures, codes and examples, several 
alternative formula representations are given as 
illustrations. 

n = 8, Planar unions with examples. 

n = 10, Polyhedra and planar unions with examples. 

n = 12, Polyhedra with examples. 

n = 12, Polyhedra and planar unions for which chemical 
examples have been found. 



GRAPHS OF POLYGONS OF ORDERS 0 - 6 

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
FORM 

PLANAR MESH 
DIAGRAM SPAN LIST 

0 0 0 

co 0 11 

A A w \ 2222 

q  (> 1313 

w 234234 

c 0 \ d 151515 



AND POLYHEDRA OF ORDER 8 
2T.500 

INCIDENCE 
MATRIX CHORD LIST 

- - 

2 3 4 
1111 

112 
11 3 

2 3 4 
2 11 

12 
2 3 

23456 
11 --ill 

17 
17 
12 

12 41 
23 12 
34 34 

12 41 
23 13 
34 24 

12 45 13 
11 2 23 56 25 

1 3 34 61 46 
114 

15 

23456 
2 11 

1 12 45 12 
1 2 23 56 34 

2 3 34 61 56 
14 

2 5 

EXAMFLE 

0 

63 

I 
s ( 

3 
/ 

RR1 NU?lBER 
OF EXAMPLE 

292 

1754 

3620 

3618 

5262 

5256 



POLYGONAL 
REPRESENTATION 

\ KY? 

GAUCHE 

‘; # 

PLANAR MESH 
DIAGRAM SPAN LIST 

152244 

153153 

333333 

23635256 

e 
24642464 

3535353s 

CUBANE 



2T.501 

INCIDENCE 
MATRIX 

23456 
2 1 I1 

1 2 
11 3 

114 
15 

23456 
2 111 

1 2 
1 13 

2 4 
15 

23456 
1 1 111 

112 
1 13 

1 4 
1 5 

1 

I 

5 
116 

17 

2345678 
11 11 

1 12 -7 11 3 
1 4 

1 15 

CHORD LIST EXAMPLE 

12 45 12 
23 56 35 
34 61 46 

12 45 12 
23 56 36 
34 61 45 

12 45 14 
23 56 25 
34 61 36 

12 56 13 
23 67 25 
34 78 47 
45 81 68 

12 56 14 
23 67 27 
34 78 36 
45 81 58 

I(- 
035 

NO EXAMPLE -- 

Hz 
&!3 

RR1 NUMBER 
OF EXAMF'LE 

5257 

5252 

6402 



2T.510 

POLYGONAL POLYHEDRAL 
REPRESENTATION FORM 

0 

UNIONS OF 8 VERTICES 

EXAMPLE 

43 

RR1 NUMBER 
OF EXAMPLE 

6452 

6381 

6400 

A 6389 

LSP 6399 

A ai@ 5 6415 



2T.511 

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
FORM 

Lk 

0 

EXAMPLE 

83 

RR1 NUMBER 
OF EXAMPLE 

6388 

6376 

6401 



POLYGONAL 
REPRESENTATION 

@ 
Em39 

@ 
CFOEC 

TRIVALENT POLYGONS OF 10 VERTICES 

POLYHEDRAL 
FORM EXAMPLE 

m 

2T.520 

RR1 NUMBER 
OF EXAMPLE 

7036 

7033 

7034 

6550 



2T.521 

POLYGONAL 
REPRESENTATION 

/;= 
0 I 
RRfG- 

I 
0 

I 

POLYHEDRAL 
FORM 

0 
A 

RR1 NUMBER 
OF EXAMPLE 

9537 

6561 



2T.522 

RR1 NUMBER 
OF EXAMPLE 

POLYHEDRAL 
FORM 

POLYGONAL 
REPRESENTATION EXAMPLE 

2% 7010 

A 6852 

6999 

D I 0 

7026 



2T.523 

POLYGONAL 
REPRESENTATION 

ABEBC 

RESEDR 

RBFBB 

@ \ 

RBFCR 

POLYHEDRAL 
FORM EXAMPLE 

n- 

& 

RR1 NUMBER 
OF EXAMPLE 

6782 

7022 

7027 

7015 

7006 



27.524 

POLYGONAL 
REPRESENTATION 

=z! 

@ 
RCECC . 

@ 
RECEC 

RDRDR 

POLYHEDRAL 
FORM 

EP 

RR1 NUMBER 
EXAMPLE OF EXAMPLE 

7031 

7028 



2T.525 

POLYGONAL 
REPRESENTATION 

REBEB 

WCEB 

RFFBB 

POLYHEDRAL 
FORM 

4 
\ -. ’ 

EXAMPLE 
RR1 NUMBER 
OF EXAMPLE 

7021 

7020 

7042 



POLYGONAL 
REPRESENTATION 

RGEBB 

BBCDB 

POLYHEDRAL 
FORM 

2T.526 
RRI NUMBER 

EXAMPLE OF EXAMPLE 

EEP 

7014 

6996 

6863 

7025 



TRIVALENT POLYHEDRA OF 12 VERTICES 

POLYGONAL GRAPH WITH ISOMORPHS POLYHEDRAL GRAPH 

Y 
Q 

BCCCCB 

Q 
BCCOUB 

fii?J 
BCDEBB 

Q 
BCDECC 

@ 
BCOFCB 

@ 
BCFBEB 

@ 
BCFFBC 

BFHFOB 

Q 
BCCEEE 

@ 
BCEBUB 

@ 
BCFCEC 

@ 
BCGDBO 

@ 
BDFBDB 

@ 
BCGCEB 

@ 
BCEFIIB 

@ 
BEHECC 

459 

@a 

7233 

r7.530 

EXAMPLE 



POLYGONAL GRAPH WITH ISOMORPHS 

BoErnB BEGEBC BFBFCC 

BDFOEC 

BFBFBB 

CGEGEC CICGCC 

CHFCFD CIFCFC 

@ 
BFCFDC 

DtFDFD 

POLYHEDRAL GRAPH 

# 

2T. 531 

EXAMPLE 

4% 
7392 



POLYGONS OF 12 VERTICES WITH EXAMPLES 

POLYHEDRON EXAMPLE 

2T.540 

RR1 NUMBER 
OF EXAMPLE POLYGON 

7233 

BCCXIUB 

63 7341 
BCEBB 

7392 

/- \ 0 \ ./ 7411 

0 \ D 7409 

7271 

\ ’ $ &RR 7369 

@ 

\ 

7120 



2T.541 

RR1 NUMBER 

7358 

P QLir 

8,,,;8 
7407 

Y 

7388 

7373 

7389 

7390 

7378 

7375 



2T.542 

RR1 NLJMBER 
OF EXAMPLE POLYGON POLYHEDRON EXAMPLE 

7370 

RBHECA 

0 / &A d 5 
C 0 

LO’ 

7174 

7146 

9606 

0 \ 7277 

RCHKR 

7381 

7387 

7372 



2T.543 

RR1 NUMBER 
OF EXAMPLE POLYGON POLYHEDRON EXAMPLE 

9558 

7230 

7276 

637 7379 

7136 

0 ’ / 7367 

RICRCR 

7396 

RIGBCB 

9601 

AIGcD6 



2T.544 

POLYGON 

RIGEBB 

@ 
R%CR 

Q 
66CFCB 

Q 
BBGCOS 

66GEB6 

POLYHEDRON 

0 

EXAMPLE 

J 

@ 

RR1 NUMBER 
OF EXAMPLE 

7097 

7355 

9602 

9585 

7376 

7391 



POLYHEDRA OF ORDERS 14-24 FOR WHICH CHEMICAL GRAPHS ARE KNOWN 2T.hO 

POLYGONAL POLYHEDRAL 
REPRESENTATION FORM 

RR1 NUMBER 
EXAMPLE OF EXAM-PLE 

1 Lf BDGEGEC 

16 BDGEHECB 

16 BDGEIGDB 

G9 

@ 

\ ti 
T 

833 
7529 

7511 

7623 

7622 

9706 

18 BCCEJHCCB 



2T.61 

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
RORM 

RR1 NLIMBER 
OF EXAMPLE EXAMPLE 

F- 

@ / 
11505 

18 BCEKGBBCB 

11506 

18 KEKGCBBB 

@ 

- 
7636 

18 BCELJCDIIB 

CD i- --- _- 8% 

7653 

18 CKIELJHFC 

F@ 7692 

20 BCOGEKIFBC 

9725 

22 BCCENLCEFC- 



2T.62 

POLYGONAL 
REPRESENTATION . . _ 

0 
29 BEQGBBEGBBEB 

POLYHEDRAL 
FORM EXAMPLE 

RR1 NUMBER 
OF EXAMPLE 

9733 

9732 



2T.70 

CODE 

(SlW 

($3ACA) 

($3BCB) 

($~ABcB) 

($5ACDR) 

QUADRI/TRIVALENT GRAPHS DERIVED FROM TRIVALENT GRAPHS, n 5 8 
- 

GRAPH 

co 

8 

A 

8 I I 

EXAMPLE RR1 B 

655 

2035 

2030 

8777 

8964 

3948 



2T.71 

RR1 w CODE 

($5AEBB) 

GRAPH EXAMPLE 

tf;. ,I.. i Hr 
NC 
83 
tJr 5272 

($A:5AECA) 4482 

w ($B:5AECA) 5273 

($~BCCB) 3966 

is3 a 
r’ w ($SCECC) 4615 

($$ZAECA) 2029 

m 

GYJ, 
/ 

(SS2CECC) 3418 


